Kalman-based autoregressive moving average modeling and inference for formant and antiformant tracking
نویسندگان
چکیده
Vocal tract resonance characteristics in acoustic speech signals are classically tracked using frameby-frame point estimates of formant frequencies followed by candidate selection and smoothing using dynamic programming methods that minimize ad hoc cost functions. The goal of the current work is to provide both point estimates and associated uncertainties of center frequencies and bandwidths in a statistically principled state-space framework. Extended Kalman (K) algorithms take advantage of a linearized mapping to infer formant and antiformant parameters from frame-based estimates of autoregressive moving average (ARMA) cepstral coefficients. Error analysis of KARMA, WAVESURFER, and PRAAT is accomplished in the all-pole case using a manually marked formant database and synthesized speech waveforms. KARMA formant tracks exhibit lower overall root-mean-square error relative to the two benchmark algorithms with the ability to modify parameters in a controlled manner to trade off bias and variance. Antiformant tracking performance of KARMA is illustrated using synthesized and spoken nasal phonemes. The simultaneous tracking of uncertainty levels enables practitioners to recognize time-varying confidence in parameters of interest and adjust algorithmic settings accordingly. VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4739462]
منابع مشابه
KARMA: Kalman-based autoregressive moving average modeling and inference for formant and antiformant tracking
Vocal tract resonance characteristics in acoustic speech signals are classically tracked using frame-by-frame point estimates of formant frequencies followed by candidate selection and smoothing using dynamic programming methods that minimize ad hoc cost functions. The goal of the current work is to provide both point estimates and associated uncertainties of center frequencies and bandwidths i...
متن کاملModeling for Energy Demand Forecasting
• Traditional approaches, including Box–Jenkins autoregressive integrated moving average (ARIMA) model, autoregressive and moving average with exogenous variables (ARMAX) model, seasonal autoregressive integrated moving average (SARIMA) model, exponential smoothing models [including Holt–Winters model (HW) and seasonal Holt and Winters’ linear exponential smoothing (SHW)], state space/Kalman fi...
متن کاملComparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملQuadrotor UAV Guidence For Ground Moving Target Tracking
The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...
متن کامل